Extensions of Certain Classical Summation Theorems for the Series F21, F32, and F43 with Applications in Ramanujan's Summations

نویسندگان

  • Yong Sup Kim
  • Medhat Ahmed Rakha
  • Arjun K. Rathie
چکیده

1 Department of Mathematics Education, Wonkwang University, Iksan 570-749, Republic of Korea 2 Mathematics Department, College of Science, Suez Canal University, Ismailia 41522, Egypt 3 Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat, Alkhod 123, Oman 4 Vedant College of Engineering and Technology, Village-Tulsi, Post-Jakhmund, Bundi, Rajasthan State 323021, India

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Extensions of Ramanujan’s 1ψ1 Summation ∗

Using functional equations, we derive noncommutative extensions of Ramanujan's 1 ψ 1 summation. 1. Introduction. Hypergeometric series with noncommutative parameters and argument, in the special case involving square matrices, have been the subject of recent study, see e.g. the papers by Duval and Ovsienko [DO], Grünbaum [G], Tirao [T], and some of the references mentioned therein. Of course, t...

متن کامل

A NEW An EXTENSION OF RAMANUJAN'S 1 1 SUMMATION WITH APPLICATIONS TO MULTILATERAL An SERIES

Abstract. In this article, we derive some identities for multilateral basic hypergeometric series associated to the root system An. First, we apply Ismail’s [15] argument to an An q-binomial theorem of Milne [25, Th. 5.42] and derive a new An generalization of Ramanujan’s 1ψ1 summation theorem. From this new An 1ψ1 summation and from an An 1ψ1 summation of Gustafson [9] we deduce two lemmas for...

متن کامل

Curious Extensions of Ramanujan ’ s

We deduce new q-series identities by applying inverse relations to certain identities for basic hypergeometric series. The identities obtained themselves do not belong to the hierarchy of basic hypergeomet-ric series. We extend two of our identities, by analytic continuation, to bilateral summation formulae which contain Ramanujan's 1 ψ 1 summation and a very-well-poised 4 ψ 6 summation as spec...

متن کامل

Combinatorial proofs of Ramanujan's 11 summation and the q-Gauss summation

Theorems in the theory of partitions are closely related to basic hypergeometric series. Some identities arising in basic hypergeometric series can be interpreted in the theory of partitions using Fpartitions. In this paper, Ramanujan’s 1ψ1 summation and the q-Gauss summation are established combinatorially.

متن کامل

Extension of Some Classical Summation Theorems for the Generalized Hypergeometric Series with Integral Parameter Differences

We derive extensions of the classical summation theorems of Kummer and Watson for the generalized hypergeometric series where r pairs of numeratorial and denominatorial parameters differ by positive integers. The results are obtained with the help of a generalization of Kummer’s second summation theorem for the 2F1 series given recently by Rakha and Rathie [Integral Transforms and Special Funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010